Thursday, 17 November 2011

Worlds Greatest Brains: Richard Feynman

By Luke Kristopher Davis


“Physics is to math what sex is to masturbation.” – Richard Feynman

The first quote on the Albert Einstein article was much more eloquent than this, though it does not contain more insight. Anyway who needs eloquence and fancy words, they are of no use and they just complicate everything. Feynman thought this way, he didn’t like liars or boasters or anyone who thought they were better than anyone else. Even with his fantastic insights: mathematical, scientific and about life in general, Feynman did not boast. He was an honest man in his personal and his academic life. The quote also neatly summarizes Feynman’s scientific perspective: he viewed mathematics as a tool to solve problems but it was not fruitful until applied to nature… the real world. When correctly and carefully applied to nature we can begin to truly understand it. This understanding brings not only the joy of knowing (a slightly platonic feeling) but also technology, medicine, economic structure… you get the point.
He was a fun, adventurous and a determined character. At school he was known as the ‘problem solver’, his friends and fellow pupils would give him their difficult math homework which he would solve even if it took him a while. Feynman would receive the same problem which he had solved before, he would solve it in seconds leaving his friends stunned, they perceived him as a genius (he sure fooled them). Throughout his life Feynman would follow his curiosity, try new things out, go to bars and charm women and win the Nobel prize. One unique characteristic of Feynman is that he was exceptionally intelligent and original with a huge dose of fun.
Feynman was born in Far Rockaway, Queens, New York and is an American citizen. His parents originated in Russia and Poland and were of Jewish descent, though          Feynman declared himself an atheist from an early age.
Similarly to Einstein, Feynman was a slow learner at a very early age. He didn’t speak a word until he was three. He eventually grew out of it but never lost his  determination to solve a problem or to find something out. Throughout his childhood Feynman loved to play and experiment. His house was quite large and this gave  him room to build mechanical devices such as radios and simple experiments. He once finely tuned a homemade radio and stumbled upon a show which he and his f- riends listened to. He listened to the broadcast before it had been played in his local area. As his friends came over for the actual broadcast he would predict what would happen and his friends would be astonished. He later shared his simple yet ingenious secret. Even when he was working on the atomic bomb with Hans Bethe at Los Alamos, he still played tricks. He would break into top secret filing cabinets and leave cheeky messages such as ‘guess who’.
His father played a vital part in nurturing Feynman’s genius, teaching him how to question common sense thinking and to develop a scientific mindset. His mother helped develop his character and sense of humor which Feynman never lost, he was always light-hearted in nature.
One mindset Feynman left home with just before he entered MIT was this;
“Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are not really there, but just to comprehend those things which are there.”

This insight is brilliant. I mean, sure, novelists and modern artists are creative but surely imagining natures inner workings requires another level of imagination because you have to really think about whats actually happening. A fiction writer just has to think of some wild plot and make it seem real enough to be read. That’s my opinion. Fiction is entertaining but I don’t think it’s creators are as creative as some of the top scientists.
Feynman entered Princeton university after applying to do a PHD with his life-long friend John Archibald Wheeler. His scores on the entrance exam were phenomenal. His thesis which John Wheeler advised was in the field of quantum mechanics. He successfully formulated the Wheeler-Feynman absorption theory which is an interpretation of electrodynamics, the theory solves the electromagnetic field equations (laws describing electric fields) using symmetry with respect to time-inversion. Don’t worry, I don’t have a clue what the theory is either. The mathematics in this theory was very complex and even Wheeler felt out of his depth. James Gleick wrote in his biography of Feynman:
“This was Richard Feynman nearing the crest of his powers. At twenty-three … there was no physicist on earth who could match his exuberant command over the native materials of theoretical science. It was not just a facility at mathematics (though it had become clear … that the mathematical machinery emerging from the Wheeler–Feynman collaboration was beyond Wheeler’s own ability). Feynman seemed to possess a frightening ease with the substance behind the equations, like Albert Einstein at the same age, like the Soviet physicist Lev Landau—but few others.”
This irreverent genius worked with Oppenheimer and the like on the Manhattan project. This project did unfortunately lead to the Hiroshima bombings, though the blame should never be thrown on the researchers but on the men and women who organised such an attack. I have always wandered why politicians, presidents and Military what nots get to decide how to use the technology and the science which they do not fully understand. It’s like giving a gun to a 4 year old boy and an Xbox to a grandad, they both don’t know how the gun and xbox work and both will cause a lot of disruption and havoc.
Feynman spent the rest of his life at CALTECH. Teaching his beloved physics to keen university students. They all called him the great explainer, as he could explain the most complicated concepts and equations with the most intuitive style. He was an amazing teacher!
His first lecture was quite big. Einstein, Pauli and the great Von neuman all attended. Feynman was nervous, but as he delved into the physics he felt calm and excited, he spoke with complete passion and with a great deal of understanding.
One of Feynman’s greatest creations is the Feynman diagram method. This is used by particle physicists as a language to describe what particles enter and exit during a collision, explosion or in an area of confined space.

Feynman’s life was not limited to his science and his personal relationships. He took up art, the bongos and made videos popularizing physics and science.
He never stopped solving problems.

As his unsuccessful wife said during a divorce:
“He begins working calculus problems in his head as soon as he awakens. He did calculus while driving in his car, while sitting in the living room, and while lying in bed at night.”
—Mary Louise Bell divorce complaint[

What a magnificent brain Richard Feynman had.

No comments:

Post a Comment